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MIGRATION BY EXTRAPOLATION OF TIME- 
DEPENDENT BOUNDARY VALUES* 

G . A .  M c M E C H A N * *  

ABSTRACT 
MCMECHAN, G.A. 1983, Migration by Extrapolation of Time-Dependent Boundary Values, 
Geophysical Prospecting 31,413-420. 

Migration of an observed zero-offset wavefield can be performed as the solution of a 
boundary value problem in which the data are extrapolated backward in time. This concept is 
implemented through a finite-difference solution of the two-dimensional acoustic wave equa- 
tion. All depths are imaged simultaneously at time 0 (the imaging condition), and all dips 
(right up to vertical) are correctly migrated. Numerical examples illustrate this technique in 
both constant and variable velocity media. 

INTRODUCTION 

There are several schemes available for depth migration of zero-offset (or normal- 
moveout-corrected stacked) seismic sections. Among the common ones are Kirch- 
hoff migration (French 1974, 1975),f-k migration (Stolt 1978), spatial deconvolution 
(Berkhout and Van Wulfften Palthe 1979, Berkhout 1980), and finite-difference 
methods (see Claerbout and Doherty 1972, Claerbout 1976). All involve some form 
of extrapolation based on the wave equation. 

This paper describes a new finite-difference approach to migration that, for 
reasons that will become apparent, shall be referred to as boundary value migration 
(BVM). BVM is based on the reversibility of the wave equation; migration of a 
zero-offset section can be treated as the reverse of data modeling by the exploding 
reflector method. In this method, upward propagation of energy is initiated at all 
reflectors at time c = 0, the wave equation carries this energy through the model, 
and each recorder produces a response time history for all subsequent times. 

The inverse problem of imaging reflectivity (i.e., migration) can be solved as a 
boundary value problem. The required boundary conditions over the recording 
surface are known at all times, and consist explicitly of the recorded observations. 
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Migration is performed by driving the mesh at each recording point with the time 
reverse of the seismic trace recorded at that point. The wave equation propagates 
the energy downward into the medium; this extrapolation is continued backwards 
in time to t = 0, when all depths are imaged simultaneously. 

The method is implemented with a two-dimensional, second-order-explicit, 
finite-difference solution of the two-way acoustic wave equation. Since no paraxial 
approximations are involved, even 90" dips are correctly migrated. 

THEORY 
In this section, the concept of migration as extrapolation of a data wavefield back- 
wards in time (rather than the usual downward continuation in depth) is illustrated 
in the simple context of a point scatterer in a homogeneous half-space. In the 
following section, examples involving more complicated reflectors and hetero- 
geneous velocity fields are presented. 

The details of the formulation used for BVM by time extrapolation have been 
presented by McMechan (1982) in the context of imaging of earthquake sources. 
The examples in that paper are relevant here since migration also can be thought of 
as a source location problem in which sources are coincident with reflectors. Since 
the algorithm has been described by McMechan (1982), only a brief summary will 
be given here. 

For use in illustrating the BVM technique, several synthetic zero-offset seismic 
data sections were generated by the exploding reflector method as referred to above. 
The finite-difference code used for this modeling is similar to that used for sub- 
sequent migration. The source function used in modeling was that presented by 
Alterman and Karal (1968). The absorbing boundary conditions described by 
Clayton and Engquist (1977) were used along the sides and bottom of the grid for 
both modeling and migration. 

Energy is propagated through the finite-difference grid by the two-dimensional 
acoustic wave equation (see Claerbout 1976, Mitchell 1969): 

1 

where U is acoustic pressure, I/ is velocity, and subscripts denote partial derivatives 
with respect to y (the horizontal coordinate), z (the depth coordinate), or t (time). 
The model velocities I/ used in both modeling and migration are half the true 
velocities because total two-way traveltimes are twice the corresponding one-way 
times from the reflectors to the receivers. The acoustic wave equation is implemen- 
ted in a second-order-explicit, finite-difference scheme. The characteristics of such 
schemes with respect to grid dispersion and numerical stability are discussed, among 
others, by Alford, Kelly and Boore (1974) and Mitchell(l969). 

At a representative time step (at time ti), three U wavefields are involved: U(y,  z ,  
t i )  is the entire (y, z )  wavefield at time ti; U(y ,  z ,  t i - J  is U at the previous time step 
( t  = ti - and U(y, z ,  ti - 2) is at t i  - . The response U(y,  , z j ,  ti) at the internal grid 
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point (yk , zj) (located at the intersection of the j th horizontal mesh line with the kth 
vertical line) at time t i  is 

u(yk, zj, li) = 2(1 - 2A2)U(yk,  z j >  t i - 1 )  - u ( Y k ,  zj, t i -2 )  

+ AIU(yk+l ,  zj, l i -1)  + u ( Y k - l ,  zj, t i - 1 )  

+ u ( Y k ,  zj+l?  t i - l )  + u ( Y k ,  zj-l? ti-l)], (2) 
where A = V(yk,  zj) At/h, At is the time step between successive U-wavefields (At = 
t i  - ti- l) ,  and h is the distance between grid lines in both y- and z-directions. The 
condition for local stability of (2)  is that At < hV-’2-’ / ’ .  

The BVM processing of the synthetic zero-offset section corresponding to a 
point reflector in a homogeneous half-space is shown in fig. 1. Figure l(a) contains 
the data section to be migrated. The finite-difference grid over which the wave 
equation is to be solved is defined in the y-z plane (a vertical slice through the 
earth). The process of migration transfers data from the y-t plane to the y-z plane as 
follows. Each iteration (each time step) during migration consists of two operations : 
the wave equation carries all the previous energy away from the upper boundary of 
the y-z plane (toward its migrated position); then, values extracted from the seis- 
mogram profile along that slice of constant time that corresponds to the current 
iteration are inserted at each recording point as new boundary conditions. These 
operations are facilitated by having the horizontal mesh increment equal to the data 
trace separation, and the time digitization increment of the data equal to the time 
step in extrapolation. [Interpolation (see Larner, Gibson and Rothman 1981) may 
be required.] Consider a specific example: fig. l(b) shows the y-z plane at time t i .  
All contributions for times greater than t i  are already present and are migrating 
toward their final positions. The boundary values to be inserted at time t i  are found 
in the seismogram profile (fig. la) along the slice at time t i  . Extrapolation continues 
backward in time with new boundary values inserted at each time step. The imaging 
condition is time 0. At this time, all the energy is at its migrated position; the entire 
y-z plane is imaged simultaneously (fig. Id). This is in contrast to schemes such as 
that of Claerbout (1976), in which the data are downward-continued in depth (rather 
than time) to image one depth slice at each (depth) iteration. 

In summary, solution of the forward problem involves generating a response 
wavefield U(y,  z, t )  from initial conditions U(y,  z, t l )  and U(y,  z, t 2 )  in a velocity 
model V(y, z). The resulting seismograms at z = 0 are U(y ,  0, t). In a real survey 
situation, U(y,  0, t )  are the recorded data. (For simplicity, z = 0 is indicated as the 
recording datum, but any ( y ,  z) points can be used). Migration of the data consists of 
successively solving (2)  with the boundary values U(y,  0, ti), U(y,  0, t i _  and U(y ,  0, 
t i - 2 )  obtained directly from the observations at each i. 

Although the point reflector example in fig. 1 is a simple one, it contains all the 
elements necessary for the construction of more complicated examples (and, in fact, 
for migration of real data, although application will be left for another paper). Any 
number of arbitrarily shaped reflections can be treated as the superposition of the 
responses to point sources (Huygens’ principle), and the spatial variation of velocity 
[V(y ,  z)] is already part of the finite-difference solution (see the equation above). 
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Fig. 1. Migration of data from a point reflector model. Panel (a) shows the synthetic zero- 
offset section computed for a point reflector model. Panels (b), (c), and (d) show the y-z plane 
(a vertical slice through the earth) at three iterations that are widely spaced in time. Time ti is 
far from the image time, time t j  is intermediate, and t = 0 is the image condition. In (d), all the 
energy in the time section (a) has been successfully migrated back to the point reflector. The 
two small artifacts that remain faintly visible below the focus are due to the data truncation 
at the two edges of the profile. The dotted lines show the relationship between the seismo- 
grams and the boundary values in the y-z plane at t = ti (see text). For clarity, only every 
fourth seismogram that was computed is plotted in (a). In the migration, however, all the 
seismograms were used. This is also true of figs. 2, 3, and 4. Physical units are not included on 
the axes to emphasize that the method is independent of scale (e.g., very large-scale features 
can be imaged using long periods). 

The following section contains three additional numerical examples of migration 
with the BVM method. In these examples, only the y-t plane and the imaged y-z 
plane will be shown; intermediate y-z plots such as fig. l(b), (c) will not be included. 

NUMERICAL EXAMPLES 

In the previous section, the method of boundary value migration was presented 
through an example of a point reflector. This section contains three additional 
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Fig. 2. Migration of a synthetic time section corresponding to a truncated, sloping reflector. 
Successive constant-time slices of the data section (a) are progressively introduced as bound- 
ary conditions and extrapolated backward in time with the two-way wave equation. The peak 
of the migrated reflector image in the y-z plane (b) coincides with the correct solution, which 
is shown as the dotted line. (See caption to fig. 1.) 

examples that are representative illustrations of the technique. The examples are a 
truncated sloping reflector, a vertical reflector, and a sinusoidal reflector. In the first 
two, velocity is constant; in the third, it is a function of both y and z. Discussion of a 
broader range of applications is included. 

Figure 2(a) contains the synthetic two-way time section for a truncated, sloping 
reflector. The diffractions generated at each end of the reflector are clear. Migration 
of this time section produces an image in the y-z plane as shown in fig. 2(b); the 
correct solution, which is a finite reflector dipping at 26.6", is indicated by the dotted 
line. 

Since the two-way wave equation is used in this migration algorithm, stable 
migration of very steep dips is possible. This is in contrast to other finite-difference 
algorithms that use an approximate (e.g. paraxial) one-way wave equation (see 
Claerbout 1976). The maximum dips that are correctly migrated by a paraxial 
approximation depend on the number of terms taken in the series expansion for the 
z extrapolation operator. Figure 3 illustrates migration of a vertical reflector (90" 
dip). Figure 3(a) contains the time section, and fig. 3(b) contains the migrated image. 
The dotted line in fig. 3(b) indicates the correct solution. Artifacts associated with 
spatial truncation of the data set, particularly at the right side, produce some 
broadening of the image. 

Another potential advantage to the use of the two-way wave equation is that it 
can correctly migrate not only energy that moves monotonically downward in the 
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Fig. 3. Migration of a synthetic time section (a) corresponding to a vertical reflector. The 
peak of the migrated image in the y-z plane (b) coincides with the correct solution, which is 
shown as the dotted line. (See caption to fig. 1.) 

z-direction during migration, but also energy whose migration path contains 
changes in the sign of dz/dt (e.g., energy that leaves an exploding reflector 
downward). For example, it is possible to image the underside of an overhanging 
structure such as often occurs at the edge of a salt dome. For this energy to be 
recorded, it is necessary that there exists some deeper structure (such as a strong 
reflector, or a region of high velocity gradient) that turns the energy back toward the 
surface. Similarly, for this energy to be migrated properly, this deeper structure must 
be explicitly contained in the velocity field through which the migration is to be 
done. McMechan (1982) contains three examples of imaging of sources (for which 
one can directly substitute exploding reflectors) .that use both up- and downgoing 
energy. It is of interest to note that this extension still conforms to the definition of 
Claerbout (1976) that a reflector exists at the spatial and temporal coincidence of 
up- and downgoing waves. 

The final example of this paper, a sinusoidal reflector, is shown in fig. 4. This is a 
more complicated example than the previous ones, both in the shape of the reflector 
and in the velocity distribution. A linear velocity gradient was used in both y-  and 
z-directions, with the velocity increasing from the upper left corner of the y-z grid to 
the lower right corner. The seismic time section (fig. 4a) was migrated to produce 
the sinusoidal image in the y-z plane (fig. 4b). 

In all the examples shown above, migration by extrapolation of time-dependent 
boundary values has produced the correct solution. This migration technique, when 
applied to primary acoustic reflected waves, does not seem to have any problems or 
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Fig. 4. Migration of a synthetic time section (a) corresponding to a sinusoidal reflector in a 
variable velocity medium. The peak of the migrated image in the y-z plane (b) coincides with 
the correct solution, which is shown as the dotted line. (See caption to fig. 1.) 

inherent restrictions, other than those already associated with finite differences (see 
Alford et al. 1974), and these can generally be overcome by the use of a higher order 
difference scheme (only second order was used here), or by using higher data sam- 
pling rates or a finer computational mesh. The algorithm can also be used as it is for 
prestack migration by extrapolating data from each shot separately and then super- 
imposing all the resultant y-z wavefields. The BVM algorithm should be directly 
applicable to real data in its present form; application is left for another paper. 
Finally, the concept of BVM is directly applicable in three, as well as two, space 
dimensions, requiring only a three-dimensional wave equation code for implemen- 
tation. 

SUMMARY 

A new method of migrating seismic time sections in variable velocity media is 
presented and illustrated with four numerical examples. The data are introduced in 
successive time slices as boundary conditions to a finite-difference extrapolation 
backwards in time. At time 0 (the imaging condition), all depths are imaged simulta- 
neously. Extrapolation through time is done with the two-way wave equation so all 
dips are correctly migrated. The method is easy to implement and has no inherent 
limitations other than those typically associated with finite differencing. 
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