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ABSTRACT

Anew scheme for the calculation of spatial derivatives has
been developed. The technique is based on recursive deriva-
tive operators that are generated by an L� fit in the spectral do-
main. The use of recursive operators enables us to extend
acoustic and elastic wave simulations to shorter wavelengths.
The method is applied to the numerical solution of the 2D
acoustic wave equation and to the solution of the equations of
2D dynamic elasticity in an isotropic medium.An example of
reverse-time migration of a synthetic data set shows that the
numerical dispersion can be significantly reduced with re-
spect to schemes that are based on finite differences. The
method is tested for the solutions of the equations of dynamic
elasticity by comparing numerical and analytic solutions to
Lamb’s problem.

INTRODUCTION

Numerical solution of acoustic and elastic equations is routinely
sed for generating synthetic seismic surveys. These simulations are
lso the basis of reverse-time migration.An effective numerical sim-
lator must be both accurate and computationally efficient. The gen-
ration of effective numerical simulators has been the topic of active
esearch in recent years.

The accuracy and efficiency of the numerical simulation depend
n the method used for calculating the spatial derivatives in the wave
quation and on the method for the time integration. For the time in-
egration, second-order differencing in time is the simplest method;
owever, with this approach, numerical dispersion is always present
nless extremely small time steps are used, which in turn make the
umerical simulation very costly. Dablain �1986� presented a high-
rder time-integration scheme that reduces numerical dispersion
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nd, for a given accuracy, improves computational efficiency. Ko-
loff et al. �1989�, Liu et al. �2009�, and Stoffa and Pestana �2009� in-
roduced more accurate and efficient time-integration schemes that
llow an arbitrary time-step size; thus, the time-integration error can
e made arbitrarily small without compromising numerical efficien-
y. The main source of errors in the numerical calculation is there-
ore in the approximation of spatial derivatives.

For the spatial derivative approximation, the fastest and least ac-
urate method is second-order finite differences, whereas the pseu-
ospectral method is the most accurate but considerably slower. In
eneral, there is a trade-off: For a specified accuracy, a lower order
ethod will require a larger number of grid points with a small num-

er of calculations per point, whereas a higher order method will re-
uire fewer grid points but more calculations per point. Examination
f the numerical phase velocity dispersion curves for explicit finite-
ifference schemes shows that although higher order schemes im-
rove the accuracy, there is a saturation effect whereby the rate of
mprovement per order of the difference operator decreases for high-
r orders. Experience indicates that the most economical order is
omewhere between fourth order and eighth order. Another method
o design explicit derivative operators is by spectral matching of the
esponse in the wavenumber domain �Holberg, 1987�. This ap-
roach presents an improvement over the finite-difference method in
he ability to propagate correctly short-wavelength components;
owever, the approach suffers from the same drawback of finite dif-
erences in that long-derivative operators fail to bring significant im-
rovement in accuracy.

An alternative approach for spatial derivative calculation is to use
mplicit or recursive derivative operators that are based on a Padé ap-
roximation �Lele, 1992; Nagarajan et al., 2003; Zhou et al., 2008�.
he idea behind this approach is that rational expansions often con-
erge faster than power series expansions, and, indeed, for a speci-
ed accuracy, this approach is more efficient than explicit finite dif-
erences; however, as with ordinary difference approximations, the
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T168 Kosloff et al.
ethod is very accurate for the longer wavelengths but less accurate
or the shorter wavelengths.

This study uses the concepts of Holberg �1987� for the design of
xplicit derivative operators for generating recursive derivative op-
rators. The basic concept was first presented by Kosloff et al.
2008�. The implicit filter coefficients are calculated by an L� spec-
ral fit in the wavenumber domain. This yields uniform accuracy
ithin the range of wavenumbers that are used for the coefficient de-

ign. The derivative operators are designed by a Remes �1934a, b, c�

xchange procedure �McClellan and Parks, 1972; Soubaras, 1996�.
his approach allows use of any number of terms in the numerator
nd in the denominator of the derivative operator, as opposed to the
adé approximation operators, in which only two terms are in the de-
ominator. The application of these operators requires the solution
f tridiagonal linear equation systems that can be carried out effi-
iently.

We describe the design of spatial derivative operators and com-
are their accuracy with the accuracy of explicit derivative opera-
ors. We then present a numerical example that compares simula-
ions that have recursive operators with fourth-order finite-differ-
nce simulations and pseudospectral numerical simulations for the
D constant density acoustic wave equation. The approach is then
pplied to the solution of the equations of 2D dynamic elasticity and
ested against the analytical solution to Lamb’s problem.

RECURSIVE SECOND-DERIVATIVE OPERATORS

Given a function f�x�, we denote its sampled values by f� j�� f�x
jdx�. The recursive second-derivative approximation can be writ-

en as

d2f

dx2 �j��
a0�a1�1�a2�2� . . .�aN�N

1�b1�1�b2�2� . . .�bM�M
f�j�, �1�

here �kf� j�� f� j�k�� f� j�k�.
We consider operators for which M �N. In this case, equation 1

an be recast in an equivalent form:

d2f

dx2 �j���c0� . . .�cN�M�N�M �
d0

1�� 0�1

� . . .
dM�1

1�� M�1�1
� f�j� . �2�

quation 2 is more convenient for calculations, whereas equation 1
s more suitable for the design of the coefficients. The first terms in
quation 2, c0� . . .�cN�M�M�N, form an explicit operator. Each of
he implicit terms �dj / �1�� j�1��f� j� forms a tridiagonal equation
ystem. In terms of cost, each explicit term in equation 2 requires one
ultiplication, whereas each implicit term requires two multiplica-

ions �Zhou et al., 2008�. The calculation of the coefficients

0,c1, . . . ,cN�M and � 0 . . . ,� M�1 from the coefficients in equation 1 is
xplained inAppendix A.
Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SE
OPERATOR DESIGN

The coefficients a1 and b1 in equation 1 are calculated by an L�

orm fit in the spectral domain �McClellan and Parks, 1972;
oubaras, 1996�. A substitution of f� j��eikx in equation 1 for x

jdx yields the fitting equation

a0� �
j�1

N

2aj cos�jkdx�� �
j�1

M

2bjk
2 cos�jkdx���k2

�3�

In the Remes �1934a, b, c� algorithm, the fitting equation is ap-
lied to N�M �2 value of k, where an error term of alternating
ign is added to each equation. The resulting �N�M �2�� �N

M �2� system of linear equations writes

a0� �
j�1

N

2aj cos�jkLdx�� �
j�1

M

2bjkL
2 cos�jkLdx�� ��1�Le

��kL
2,

L�1, . . . ,N�M �2. �4�

he unknowns are a0,a1, . . . ,aN,b1, . . . ,bM and the error e. The N�M
2 wavenumber components kL are within the range 0�kL � kmax,

here kmax is specified by the user. The value of kmax should be set to
ive the best compromise between a small value of the error e and
he largest wavenumber component that can be propagated with lit-
le numerical dispersion. The system in equation 4 is solved itera-
ively, whereby each time the N�M �2 values of kL are selected at
he locations of the extreme of the error,

E�k��a0� �
j�1

N

2aj cos�jkdx�� �
j�1

M

2bjk
2 cos�kjdx��k2

n this application, this procedure converges in a small number of it-
rations.

STAGGERED RECURSIVE
FIRST-DERIVATIVE OPERATORS

Given a sampled function f� j�� f�x� jdx�, j�0, . . . ,Nx�1 the
taggered first-derivative operator can be written as

df

dx
� j�

1

2
	�

a0�0�a1�1�a2�2� . . .�aN�N

1�b1�1�b2�2� . . .�bM�M
f�j�,

�5�

here �kf� j� 1
2
�� f� j�k�1�� f� j�k� and �kf� j� 1

2
�� f� j

k�1�� f� j�k�, k�0,1. . .. This form of the operator maintains
he required oddness of the first derivative.

The design of the coefficients ai and bi follows the same steps as in
he design of the second-derivative operator in the previous section.
he equations of the L� fit are given by

�
j�0

N

2aj sin� kL�2j�1�dx

2
�� �

j�1

M

2bjkl cos� kL�2j�1�dx

2
�

� ��1�Le�k , L�1, . . . ,N�M �2.
L
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Recursive spatial derivative operators T169
ACCURACY OF THE DERIVATIVE OPERATORS

We consider the application of the second-derivative operator to
he function f� j��eikjdx for different k values and denote the output
s �k̂2f� j�. Assuming that there are no errors in the time integration
through use of very small time steps or use of a high-accuracy time-
ntegration scheme�, the normalized numerical phase velocity is giv-
n by cf �k / k̂. Figure 1 plots the normalized phase velocity against
avenumber for different operators. In Figure 1, the curve marked

d-4 represents the fourth-order finite-differences operator, whereas
-1, for example, denotes an operator obtained from equation 1 with
�3 and M �1, respectively. Figure 1 also shows the dispersion

urve for the sixth-order Padé operator, the coefficients of which
ere taken from Liu and Sen �2009; Table 1�. In the ideal case, the
perator would yield a normalized phase velocity of 1 for all wave-
umber components. In the design of the operators, the maximum
avenumber kmax was adjusted such that the maximum normalized
hase-velocity error in the range 0�kl �kmax should be � 0.5%.
Figure 1 shows that the inclusion of a rational term improved the

ccuracy of the derivative operator. In particular, the 3-1 operator
roduces a very good response. The 3-0 operator also has a better re-
ponse than the fourth-order finite-difference operator, which con-
ains the same number of coefficients.

Figure 2 compares the dispersion curves for the 3-1 operator, the
ixth-order Padé operator �the coefficients of which were taken from
iu and Sen �2009; Table 1��, and the 5-0 operator. These operators

equire approximately the same amount of computational effort.
igure 2 shows that the implicit 3-1 operator is better than the explic-

t 5-0 operator and also better than the Padé operator, which has an
dentical structure. The improvement over the Padé operator is simi-
ar to the improvement that was reported by Holberg �1987� for ex-
licit derivative operators.

Table 1 lists the coefficients in equation 1 which were calculated
or different operators with dx�1. In actual applications, the ai co-
fficients need to be divided by dx2.

With regard to numerical stability, the numerical response of the
ecursive derivative operators is very close to the response of the
seudospectral method. Because the stability limit depends on the
alue of k̂max, the two methods have a very similar limit. In practice,
o avoid numerical dispersion, one selects time-step sizes that are
onsiderably smaller than the stability limit �Kosloff and Baysal,
982�.

able 1. Weights for different derivative operators.

a0 a1 a2

d-2 �2 1

d-4
�

5
2

4
3

�

d-6 �2.722 1.5 �0

3-0 �2.653 1.439 �0

4-0 �2.928 1.663 �0

5-0 �3.070 1.789 �0

2-1 �2.470 1.235

3-1 �2.090 0.8628 0
Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SE
NUMERICAL SOLUTION FOR
ACOUSTIC AND ELASTIC

ave propagation

For 2D acoustic wave propagation, the constant density wave
quation is solved. The equation is given by

�2P

�x2 �
�2P

�y2 �
1

c2

�2P

�t2 � f , �6�

here P�x,y,t� denotes the pressure field, c�x,y� is the acoustic ve-
ocity, and f�x,y,t� is the source term. The spatial derivatives in equa-
ion 6 are calculated by using the recursive second-derivative opera-
or. The solution is propagated in time by second-order time step-
ing. For avoidance of unwanted grid boundary reflections, absorb-
ng regions were added along the boundaries �Kosloff and Kosloff,
986�.

For the equations of isotropic dynamic elasticity, the velocity-
tress system is propagated, e.g., Carcione �2007�, Operto et al.
2007�, Kosloff and Carcione �2010�. The system writes

a3 a4 b1

— — —

— — —

0.0111 — —

— — —

0.0276 — —

0.0697 �0.0106 —

— — 0.1228

— — 0.2894

1.0

0.8

0.6

0.4

0.2

0.0

C
/C

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2-1
3-0
3-1
4-0
fd-4

Kdx/π

igure 1. Normalized phase velocity versus normalized wavenum-
er Kdx /� for different second-derivative operators.
—

1
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d
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x�x,y,t� and vy�x,y,t� denote the particle velocity in the x and y di-
ections, respectively; � xx�x,y,t�, � yy�x,y,t�, and � xy�x,y,t� are the
tress components; ��x,y� and ��x,y� are the shear modulus and the
igidity, respectively; 
�x,y� is the density; fx�x,y,t� and f y�x,y,t� are
he body forces; and 	 �x,y� is an absorbing factor that differs from
ero only along the boundaries of the numerical grid �Kosloff and
osloff, 1986�. The variables are located on a staggered grid in the

ollowing manner �Kosloff and Carcione, 2010�:

1.0

0.8

0.6

0.4

0.2

0.0

C
/C

0

0 0.2 0.4 0.6 0.8 1
Kdx/π

1.2

exact
3-1
5-0

pade

igure 2. Normalized phase velocity versus normalized wavenum-
er Kdx /� for different second-derivative operators.
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�i,j�� xx, � yy, �, ��2�,

�i�
1

2
,j�vx, fx, 
,

�i,j�
1

2
�vy, fy, 
,

nd

�i�
1

2
, j�

1

2
�� xy, � .

aterial properties at half grid points are computed by averaging the
alues defined at regular points �Kosloff and Carcione, 2010�.

The spatial derivatives in equation 7 are calculated by the recur-
ive first-derivative operator. For the first and last nodes, the deriva-
ives are calculated by second-order central differencing. The propa-
ation of the solution in time is carried out by a fourth-order Runga-
utta algorithm �Carcione, 2007�.
The boundary conditions that were applied included rigid bound-

ry conditions along the sides and bottom of the numerical mesh and
free surface boundary condition on the top. PML �perfectly
atched layer� absorbing regions were applied along the sides and

ottom of the mesh. The free surface boundary condition was im-
osed by the image method by setting

� xy�i�
1

2
,�

1

2
,ndt���� xy�i�

1

2
,
1

2
,ndt�,

and

vy�i,�
1

2
,ndt��vy�i,

1

2
,ndt�

�dy
��i,0�

��i,0��2��i,0�
�vx

�x
�i,0� �8�

Operto et al., 2007�, where dy is the vertical grid spacing. The sec-
nd condition in equation 8 combined with the calculation of the ver-
ical derivative of vy in the first row of nodes by second-order differ-
ncing ensures that � yy �0 at the surface and that � xx there is calcu-
ated in a consistent manner.

To improve the calculation of surface waves in the vicinity of the
ree surface, we used a variable mesh in which the grid spacing near
he surface is reduced �Kosloff and Carcione, 2010�. The mapping
unction is given by

y�
 ��dy��1��

2

 �

1��

2


 0

�
sin

�



 0
�, �9�

here 
 0 is the number of grid points in the stretch region; 
 is the
rid number in the y direction; and � is a stretch factor, e.g., the grid
ize on the surface is ��dy. The derivatives with respect to y are cal-
ulated by a chain rule,

�f

�y
�

�f

�

�

d


dy
,

here,
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dy

d

�dy�1��

2
�1�cos

�



 0
	��� .

ypical values for the parameters are 
 0�30 and � �0.2

xamples

igration of a synthetic data set

The numerical derivative operators were tested in a 2D example
f zero-offset reverse-time migration with the constant density
coustic wave equation. The subsurface model consisted of a single
eflector with two segments dipping in opposite directions and one
orizontal segment �Figure 3�. The model has a constant velocity of
500 m /s. The maximum frequency in this example was 80 Hz, the
orizontal and vertical grid spacing was 27 m, and the time step was
ms. The input time section was obtained by numerical modeling

sing the program Susylnv from the Seismic Unix-SU Package. Fig-
re 4a-d, respectively, show migrated images that were obtained
ith the fourth-order finite-difference method, the 2-1 operator
ethod, the 3-1 operator method, and the pseudospectral method.
he choice of the maximum frequency depends on the dispersion
ondition. Considering G�5, where G is the number of points per
avelength, the highest frequency allowed by the fourth-order fi-
ite-difference scheme to avoid dispersion
hould be �16.7 Hz. As Figure 4 shows, the nu-
erical dispersion is most prominent in Figure 4a

f the fourth-order finite-difference method. Fig-
re 4b of the 2-1 recursive method is somewhat
mproved, whereas the improvement in Figure 4c
f the 3-1 recursive method is very obvious. In
act, the result in Figure 4c is almost as good as
he result of the pseudospectral method in Figure
d.

amb’s problem

Numerical and analytic solutions are com-
ared for the problem of a vertical point source
mbedded in a uniform 2D isotropic elastic half-
pace. The analytical solution is obtained by the
ethod of Cagniard-De Hoop �Berg et al., 1994�.
The medium parameters were vp�2000 m /s,

s�1155 m /s, and 
 �2000 kg /m3. The point
ource was located 2 m beneath the free surface
nd had a Ricker wavelet time history with a cen-
ral frequency of 10 Hz. It was applied as a force
erm on a single node. The numerical solution
sed a grid that contained 440 points in the hori-
ontal direction and 220 points in the vertical di-
ection. The horizontal grid spacing was 10 m.
he vertical grid spacing was 10 m away from

he free surface. Grid compression was used in
he upper part of the grid with values of 
 0�50
nd � �0.1 in equation 9. The calculations were
arried out to t�2 s.

Figures 5 and 6, respectively, show snapshots
f the horizontal and vertical particle velocities at
�0.8 s. In the figures, the P-wave and the S-
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ave as well as the PS converted head wave. The Rayleigh wave is
ost prominent in the vicinity of the free surface, and it slightly lags

ehind the S-wave, as predicted �for the selected parameters VR

0.92VS�.
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The first comparison between numerical and analytic solutions is
or a shallow receiver located at a large distance from the source. In
his range, the solution is dominated by the Rayleigh wave, which
oses a challenge to numerical simulations. Figures 7 and 8, respec-
ively, compare numerical and analytical solutions for the horizontal
article velocity and the vertical particle velocity for a receiver lo-
ated 2 m beneath the surface at a horizontal distance of 1400 m
rom the source. As the figures show, the comparison is quite satis-
actory for both horizontal and vertical components.

Figures 9 and 10 compare numerical and analytic solutions for
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igure 5. Elastic modeling constant velocity case: Horizontal veloci-
y particle snapshot at t�0.8 s.
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igure 6. Elastic modeling constant velocity case: Vertical velocity
article snapshot at t�0.8 s.
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Recursive spatial derivative operators T173
orizontal and vertical particle velocities at a receiver located at a
orizontal distance of 1000 m from the source at a depth of 650 m.
gain, the comparisons between the numerical and analytical solu-

ions are very good.

CONCLUSIONS

We have presented a new scheme for calculating first and second
patial derivatives on a grid that is based on recursive operators. The
ethod is based on applying recursive operators in each of the spa-

ial coordinates. The operators were designed by a fit of the response
n the wavenumber domain. It was shown that these operators enable
xtension of numerical solutions to shorter wavelengths while sav-
ng in computer time. It seems that the addition of a single rational
erm in the derivative operator significantly increases its effective-
ess.

The application of the recursive derivative operators involves so-
ution of tridiagonal linear equation systems. Such systems can be
olved with approximately 2N mathematical operations, where N is
he number of sample points. This number is approximately twice
he number of operations that are required for calculating derivatives
ith explicit operators. The method of this study can also be applied

o 3D, for which the recursive operators are applied separately in the
hree coordinate directions.

ACKNOWLEDGMENTS

We thank three anonymous reviewers, whose comments helped
ignificantly to improve the manuscript.

APPENDIX A

DERIVATION OF THE COEFFICIENTS
IN EQUATION 2

Given the coefficients ai, i�0, . . . ,N and bi, i�1, . . . ,M in equa-
ion 1, the coefficients in equation 2 can be calculated from them an-
lytically; however, in this study, we chose to derive them by a nu-
erical procedure that is easy to implement.

First, equation 1 is recast in an alternative form:

a0�a1�1�a2�2� . . .�aN�N

1�b1a1�b2�2� . . .�bM�M
f�j�

�
a0��a1��1�a2��1

2� . . .�aN��1
N

b0��b1��1�b2��1
2� . . .�bM� �1

M f�j� . �A-1�

The coefficients bi� on the righthand side of equation A-1 can be
elated to the coefficients bi on the lefthand side by choosing f� j�

eikjdx and equating the denominators on both sides of equation
-1. The resulting equation writes

1�2b1 cos kdx�2b2 cos 2kdx� . . .�2 cos Mkdx�b0�

�2b1� cos kdx�4b2 cos2 kdx� . . .

�2MbM� cosM kdx . �A-2�

By selecting M values of k, which yield different values of
os kdx, i.e., they should not be equal to 2� , we obtain a set of M lin-
ar equations in M unknowns for the bi� coefficients.

The � i coefficients in equation 2 are then given by � i��1 /�i,
here � i�1, . . . ,M are the roots of the polynomial
i
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P�x��b0��b1�x
1�b2�x

2� . . .�bM� xM .

Finally, cii�0, . . . ,N�M and dii�0, . . . ,M �1 in equation 2
re calculated by solving the set of N�1 linear equation in N�1
nknowns:

c0�2c1 cos k�dx� . . .�2cN�M cos�N�M�k�dx

�
d0

1�2� 0 cos k�dx
� . . .�

dM�1

1�2� M�1 cos k�dx

�
a0�2a1 cos k�dx� . . .�2aN cos Nk�dx

1�2b1 cos k�dx� . . .�2bM cos Mk�dx
,

where � �0, . . . ,N

or different values of cos k�dx. The righthand side of this equation is
nown.
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