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Acoustic and elastic numerical wave simulations
by recursive spatial derivative operators

Dan Kosloff', Reynam C. Pestana?, and Hillel Tal-Ezer®

ABSTRACT

Anew scheme for the calculation of spatial derivatives has
been developed. The technique is based on recursive deriva-
tive operators that are generated by an L.. fit in the spectral do-
main. The use of recursive operators enables us to extend
acoustic and elastic wave simulations to shorter wavelengths.
The method is applied to the numerical solution of the 2D
acoustic wave equation and to the solution of the equations of
2D dynamic elasticity in an isotropic medium. An example of
reverse-time migration of a synthetic data set shows that the
numerical dispersion can be significantly reduced with re-
spect to schemes that are based on finite differences. The
method is tested for the solutions of the equations of dynamic
elasticity by comparing numerical and analytic solutions to
Lamb’s problem.

INTRODUCTION

Numerical solution of acoustic and elastic equations is routinely
used for generating synthetic seismic surveys. These simulations are
also the basis of reverse-time migration. An effective numerical sim-
ulator must be both accurate and computationally efficient. The gen-
eration of effective numerical simulators has been the topic of active
research in recent years.

The accuracy and efficiency of the numerical simulation depend
on the method used for calculating the spatial derivatives in the wave
equation and on the method for the time integration. For the time in-
tegration, second-order differencing in time is the simplest method;
however, with this approach, numerical dispersion is always present
unless extremely small time steps are used, which in turn make the
numerical simulation very costly. Dablain (1986) presented a high-
order time-integration scheme that reduces numerical dispersion

and, for a given accuracy, improves computational efficiency. Ko-
sloff etal. (1989), Liu et al. (2009), and Stoffa and Pestana (2009) in-
troduced more accurate and efficient time-integration schemes that
allow an arbitrary time-step size; thus, the time-integration error can
be made arbitrarily small without compromising numerical efficien-
cy. The main source of errors in the numerical calculation is there-
fore in the approximation of spatial derivatives.

For the spatial derivative approximation, the fastest and least ac-
curate method is second-order finite differences, whereas the pseu-
dospectral method is the most accurate but considerably slower. In
general, there is a trade-off: For a specified accuracy, a lower order
method will require a larger number of grid points with a small num-
ber of calculations per point, whereas a higher order method will re-
quire fewer grid points but more calculations per point. Examination
of the numerical phase velocity dispersion curves for explicit finite-
difference schemes shows that although higher order schemes im-
prove the accuracy, there is a saturation effect whereby the rate of
improvement per order of the difference operator decreases for high-
er orders. Experience indicates that the most economical order is
somewhere between fourth order and eighth order. Another method
to design explicit derivative operators is by spectral matching of the
response in the wavenumber domain (Holberg, 1987). This ap-
proach presents an improvement over the finite-difference method in
the ability to propagate correctly short-wavelength components;
however, the approach suffers from the same drawback of finite dif-
ferences in that long-derivative operators fail to bring significant im-
provement in accuracy.

An alternative approach for spatial derivative calculation is to use
implicit or recursive derivative operators that are based on a Padé ap-
proximation (Lele, 1992; Nagarajan et al., 2003; Zhou et al., 2008).
The idea behind this approach is that rational expansions often con-
verge faster than power series expansions, and, indeed, for a speci-
fied accuracy, this approach is more efficient than explicit finite dif-
ferences; however, as with ordinary difference approximations, the
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method is very accurate for the longer wavelengths but less accurate
for the shorter wavelengths.

This study uses the concepts of Holberg (1987) for the design of
explicit derivative operators for generating recursive derivative op-
erators. The basic concept was first presented by Kosloff et al.
(2008). The implicit filter coefficients are calculated by an L.. spec-
tral fit in the wavenumber domain. This yields uniform accuracy
within the range of wavenumbers that are used for the coefficient de-
sign. The derivative operators are designed by a Remes (1934a, b, ¢)
exchange procedure (McClellan and Parks, 1972; Soubaras, 1996).
This approach allows use of any number of terms in the numerator
and in the denominator of the derivative operator, as opposed to the
Padé approximation operators, in which only two terms are in the de-
nominator. The application of these operators requires the solution
of tridiagonal linear equation systems that can be carried out effi-
ciently.

We describe the design of spatial derivative operators and com-
pare their accuracy with the accuracy of explicit derivative opera-
tors. We then present a numerical example that compares simula-
tions that have recursive operators with fourth-order finite-differ-
ence simulations and pseudospectral numerical simulations for the
2D constant density acoustic wave equation. The approach is then
applied to the solution of the equations of 2D dynamic elasticity and
tested against the analytical solution to Lamb’s problem.

RECURSIVE SECOND-DERIVATIVE OPERATORS

Given a function f(x), we denote its sampled values by f[ j] = f(x
= jdx). The recursive second-derivative approximation can be writ-
tenas

a0+ (l]A] +a2A2 + ... +CINANﬂj] (1)
1+b,A+byAy+ ...+ by

d2
-

where Aif1j] = f1j + k] + f1j — k.
We consider operators for which M = N. In this case, equation 1
can be recast in an equivalent form:

d’f . dy
E[]]:(CO—F.“—FCN_MAN_M—'_1+B0A1
dy - )
+ =] (2)
1+ By-14

Equation 2 is more convenient for calculations, whereas equation 1
is more suitable for the design of the coefficients. The first terms in
equation 2, ¢y + ... + cy—yAy—y, form an explicit operator. Each of
the implicit terms [dj/ (1 + B,A,)1f(j) forms a tridiagonal equation
system. In terms of cost, each explicit term in equation 2 requires one
multiplication, whereas each implicit term requires two multiplica-
tions (Zhou et al., 2008). The calculation of the coefficients
C0sC1s---Cy—y and By. .., By -1 from the coefficients in equation 1 is
explained in Appendix A.

OPERATOR DESIGN

The coefficients a; and b, in equation 1 are calculated by an L..
norm fit in the spectral domain (McClellan and Parks, 1972;
Soubaras, 1996). A substitution of f[j] = ¢ in equation 1 for x
= jdx yields the fitting equation

N M
ag+ 2 2a; cos(jkdx) + 2, 2b k> cos(jkdx) = — k>
j=1 j=1

A3)

In the Remes (1934a, b, c) algorithm, the fitting equation is ap-
plied to N + M + 2 value of k, where an error term of alternating
sign is added to each equation. The resulting (N + M + 2) X (N
+ M + 2) system of linear equations writes

N M
ag+ 2, 2a; cos(jk,dx) + 2, 2bk; cos(jkdx) + (—1)te
= =
:J_kz’ J
L=1,..N+M+2. 4)
The unknowns are ag,a,,...,ay,b,...,by and the error e. The N + M

+ 2 wavenumber components k; are within the range 0 =k, < k...,
where k,,, is specified by the user. The value of &, should be set to
give the best compromise between a small value of the error e and
the largest wavenumber component that can be propagated with lit-
tle numerical dispersion. The system in equation 4 is solved itera-
tively, whereby each time the N + M + 2 values of k; are selected at
the locations of the extreme of the error,

N M
E(k) = ag+ 2, 2a; cos(jkdx) + X, 2bk* cos(kjdx) + k>
Jj=1 j=1
In this application, this procedure converges in a small number of it-
erations.

STAGGERED RECURSIVE
FIRST-DERIVATIVE OPERATORS

Given a sampled function f]j] = f(x = jdx),j = 0,...,Nx — 1 the
staggered first-derivative operator can be written as

df . 1 a()VO + alvl + a2V2 + ...+ ClNVN .
—lit5 = JUl
dx 2 1+blA1+b2A2+ +bMAM

)

where A flj + %] =flj+k+1]+/j—k] and V,Aj + %] =flj
+k+ 1]—f[j — k], k= 0,1.... This form of the operator maintains
the required oddness of the first derivative.

The design of the coefficients a; and b; follows the same steps as in
the design of the second-derivative operator in the previous section.
The equations of the L. fit are given by

N M

k (27 + 1)d k(27 + 1)d
2 zaj sin(M) + E ijkl COS(M)
j=0 2 j=1 2

+(=De=k;, L=1,...N+M+2.
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ACCURACY OF THE DERIVATIVE OPERATORS

We consider the application of the second-derivative operator to
the function f] j] = €™ for different k values and denote the output
as —k2 f1j1. Assuming that there are no errors in the time integration
(through use of very small time steps or use of a high-accuracy time-
integration scheme), the normalized numerical phase velocity is giv-
enbyc,=k/ k. Figure 1 plots the normalized phase velocity against
wavenumber for different operators. In Figure 1, the curve marked
fd-4 represents the fourth-order finite-differences operator, whereas
3-1, for example, denotes an operator obtained from equation 1 with
N =3 and M = 1, respectively. Figure 1 also shows the dispersion
curve for the sixth-order Padé operator, the coefficients of which
were taken from Liu and Sen (2009; Table 1). In the ideal case, the
operator would yield a normalized phase velocity of 1 for all wave-
number components. In the design of the operators, the maximum
wavenumber k,,,, was adjusted such that the maximum normalized
phase-velocity error in the range 0 = k; = k,,,,, should be < 0.5%.

Figure 1 shows that the inclusion of a rational term improved the
accuracy of the derivative operator. In particular, the 3-1 operator
produces a very good response. The 3-0 operator also has a better re-
sponse than the fourth-order finite-difference operator, which con-
tains the same number of coefficients.

Figure 2 compares the dispersion curves for the 3-1 operator, the
sixth-order Padé operator (the coefficients of which were taken from
Liu and Sen [2009; Table 1]), and the 5-0 operator. These operators
require approximately the same amount of computational effort.
Figure 2 shows that the implicit 3-1 operator is better than the explic-
it 5-0 operator and also better than the Padé operator, which has an
identical structure. The improvement over the Padé operator is simi-
lar to the improvement that was reported by Holberg (1987) for ex-
plicit derivative operators.

Table 1 lists the coefficients in equation 1 which were calculated
for different operators with dx = 1. In actual applications, the a; co-
efficients need to be divided by dx>.

With regard to numerical stability, the numerical response of the
recursive derivative operators is very close to the response of the
pseudospectral method. Because the stability limit depends on the
value of k., the two methods have a very similar limit. In practice,
to avoid numerical dispersion, one selects time-step sizes that are
considerably smaller than the stability limit (Kosloff and Baysal,
1982).

Table 1. Weights for different derivative operators.

T169

NUMERICAL SOLUTION FOR
ACOUSTIC AND ELASTIC
Wave propagation

For 2D acoustic wave propagation, the constant density wave
equation is solved. The equation is given by

PP 1P

—=——5+1F
8y2 c? or? !

P

x>

(6)

where P(x,y,r) denotes the pressure field, ¢(x,y) is the acoustic ve-
locity, and f(x,y,t) is the source term. The spatial derivatives in equa-
tion 6 are calculated by using the recursive second-derivative opera-
tor. The solution is propagated in time by second-order time step-
ping. For avoidance of unwanted grid boundary reflections, absorb-
ing regions were added along the boundaries (Kosloff and Kosloff,
1986).

For the equations of isotropic dynamic elasticity, the velocity-
stress system is propagated, e.g., Carcione (2007), Operto et al.
(2007), Kosloff and Carcione (2010). The system writes

10
08}
S
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Figure 1. Normalized phase velocity versus normalized wavenum-
ber Kdx/  for different second-derivative operators.

ay a a, as ay b,
fd-2 -2 1 — — — —
fd-4 5 4 1 — — —

2 3 12
fd-6 —2.722 1.5 —0.15 0.0111 — —
3-0 —2.653 1.439 —0.1123 — — —
4-0 —2.928 1.663 -0.2262 0.0276 — —
5-0 -3.070 1.789 -0.3129 0.0697 —0.0106 —
2-1 —2.470 1.235 — — — 0.1228
3-1 -2.090 0.8628 0.1823 — — 0.2894
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v, (x,y,7) and v,(x,y,r) denote the particle velocity in the x and y di-
rections, respectively; o (x,y,t), 0,,(x,y,1), and o ,(x,y,t) are the
stress components; A(x,y) and u(x,y) are the shear modulus and the
rigidity, respectively; p(x,y) is the density; f,(x,y.r) and f,(x,y,r) are
the body forces; and y(x,y) is an absorbing factor that differs from
zero only along the boundaries of the numerical grid (Kosloff and
Kosloff, 1986). The variables are located on a staggered grid in the
following manner (Kosloff and Carcione, 2010):

12} i
1.0 —mmm—— e —
<
J
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S
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Figure 2. Normalized phase velocity versus normalized wavenum-
ber Kdx/  for different second-derivative operators.
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Material properties at half grid points are computed by averaging the
values defined at regular points (Kosloff and Carcione, 2010).

The spatial derivatives in equation 7 are calculated by the recur-
sive first-derivative operator. For the first and last nodes, the deriva-
tives are calculated by second-order central differencing. The propa-
gation of the solution in time is carried out by a fourth-order Runga-
Kautta algorithm (Carcione, 2007).

The boundary conditions that were applied included rigid bound-
ary conditions along the sides and bottom of the numerical mesh and
a free surface boundary condition on the top. PML (perfectly
matched layer) absorbing regions were applied along the sides and
bottom of the mesh. The free surface boundary condition was im-
posed by the image method by setting

o101 11
oulit+ —, ——,ndt| = —oulit —,—,ndt |,
22 22

and

1 1
vy(i, — 5,ndt> = vy<i,5,ndt>

AGO)
YN00) + 2ui,0) ox @0 (®

(Operto et al., 2007), where dy is the vertical grid spacing. The sec-
ond condition in equation 8§ combined with the calculation of the ver-
tical derivative of v, in the first row of nodes by second-order differ-
encing ensures that o,, = 0 at the surface and that o, there is calcu-
lated in a consistent manner.

To improve the calculation of surface waves in the vicinity of the
free surface, we used a variable mesh in which the grid spacing near
the surface is reduced (Kosloff and Carcione, 2010). The mapping
function is given by

g_

1+« l—aé_ﬂ'_g
5 . sin . ), 9)

y(§)=dy><(

where & is the number of grid points in the stretch region; £ is the
grid number in the y direction; and « is a stretch factor, e.g., the grid
size on the surface is = ady. The derivatives with respect to y are cal-
culated by a chainrule,

o _of de
ay B 9 dy’

where,
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j—é=dy<—1;a{l—cos7;—f] +a>.

Typical values for the parameters are §, = 30 and @« = 0.2

Examples

Migration of a synthetic data set

The numerical derivative operators were tested in a 2D example
of zero-offset reverse-time migration with the constant density
acoustic wave equation. The subsurface model consisted of a single
reflector with two segments dipping in opposite directions and one
horizontal segment (Figure 3). The model has a constant velocity of
4500 m/s. The maximum frequency in this example was 80 Hz, the
horizontal and vertical grid spacing was 27 m, and the time step was
2 ms. The input time section was obtained by numerical modeling
using the program Susylnv from the Seismic Unix-SU Package. Fig-
ure 4a-d, respectively, show migrated images that were obtained
with the fourth-order finite-difference method, the 2-1 operator
method, the 3-1 operator method, and the pseudospectral method.
The choice of the maximum frequency depends on the dispersion
condition. Considering G = 5, where G is the number of points per
wavelength, the highest frequency allowed by the fourth-order fi-
nite-difference scheme to avoid dispersion
should be <16.7 Hz. As Figure 4 shows, the nu-
merical dispersion is most prominent in Figure 4a
of the fourth-order finite-difference method. Fig-
ure 4b of the 2-1 recursive method is somewhat

a)

improved, whereas the improvement in Figure 4¢ 500
of the 3-1 recursive method is very obvious. In
fact, the result in Figure 4c is almost as good as 1000
the result of the pseudospectral method in Figure €
4d. £ 1500
Q.
[
a

Lamb’s problem

Numerical and analytic solutions are com-
pared for the problem of a vertical point source
embedded in a uniform 2D isotropic elastic half-
space. The analytical solution is obtained by the
method of Cagniard-De Hoop (Berg et al., 1994).

The medium parameters were v, = 2000 m/s, c) 0
v, = 1155 m/s, and p = 2000 kg/m?>. The point 0
source was located 2 m beneath the free surface
and had a Ricker wavelet time history with a cen- 500
tral frequency of 10 Hz. It was applied as a force
term on a single node. The numerical solution
used a grid that contained 440 points in the hori- . 1000
zontal direction and 220 points in the vertical di- £
rection. The horizontal grid spacing was 10 m. ~ § 1500
The vertical grid spacing was 10 m away from a
the free surface. Grid compression was used in 2000
the upper part of the grid with values of &, = 50
and @ = 0.1 in equation 9. The calculations were 500

carriedouttot = 2 s.

Figures 5 and 6, respectively, show snapshots
of the horizontal and vertical particle velocities at
t= 0.8 s. In the figures, the P-wave and the S-

Distance (m)
1000

1000

Distance (m) )

T171

wave as well as the PS converted head wave. The Rayleigh wave is
most prominent in the vicinity of the free surface, and it slightly lags
behind the S-wave, as predicted (for the selected parameters Vp
~0.92Vy).

Distance (m)

2000 3000 4000

0 1000
0 L

500
1000

1500
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Figure 3. Depth model: Constant velocity.
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Figure 4. Reverse-time migration results. (a) Fourth-order finite-difference operator
(4-0); (b) implicit operator (2-1); (c) implicit operator (3-1), and (d) pseudospectral meth-
od.
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The first comparison between numerical and analytic solutions is
for a shallow receiver located at a large distance from the source. In
this range, the solution is dominated by the Rayleigh wave, which
poses a challenge to numerical simulations. Figures 7 and 8, respec-
tively, compare numerical and analytical solutions for the horizontal
particle velocity and the vertical particle velocity for a receiver lo-
cated 2 m beneath the surface at a horizontal distance of 1400 m
from the source. As the figures show, the comparison is quite satis-
factory for both horizontal and vertical components.

Figures 9 and 10 compare numerical and analytic solutions for

Distance (m)
3000 4000

Figure 5. Elastic modeling constant velocity case: Horizontal veloci-
ty particle snapshotats = 0.8 s.

Distance (m)
2000

e

0 1000 3000 4000

500

1000

Depth (m)

1500

Figure 6. Elastic modeling constant velocity case: Vertical velocity
particle snapshotat? = 0.8 s.
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Figure 7. Comparison between numerical and analytical solution for
the horizontal velocity particle located at x = 1400 m and z =2 m
from the source.
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Figure 8. Comparison between numerical and analytical solution for
the vertical velocity particle located at x = 1400 m and z=2 m
from the source,
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Figure 9. Comparison between numerical and analytical solution for

the horizontal velocity particle located at x= 1000 m and z

= 675 m from the source.
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Figure 10. Comparison between numerical and analytical solution
for the vertical velocity particle located at x = 1000 m and z
= 675 m from the source.
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horizontal and vertical particle velocities at a receiver located at a
horizontal distance of 1000 m from the source at a depth of 650 m.
Again, the comparisons between the numerical and analytical solu-
tions are very good.

CONCLUSIONS

We have presented a new scheme for calculating first and second
spatial derivatives on a grid that is based on recursive operators. The
method is based on applying recursive operators in each of the spa-
tial coordinates. The operators were designed by a fit of the response
in the wavenumber domain. It was shown that these operators enable
extension of numerical solutions to shorter wavelengths while sav-
ing in computer time. It seems that the addition of a single rational
term in the derivative operator significantly increases its effective-
ness.

The application of the recursive derivative operators involves so-
lution of tridiagonal linear equation systems. Such systems can be
solved with approximately 2N mathematical operations, where N is
the number of sample points. This number is approximately twice
the number of operations that are required for calculating derivatives
with explicit operators. The method of this study can also be applied
to 3D, for which the recursive operators are applied separately in the
three coordinate directions.
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APPENDIX A

DERIVATION OF THE COEFFICIENTS
IN EQUATION 2

Given the coefficients a;, i = 0,...,Nand b;,i = 1,...,M in equa-
tion 1, the coefficients in equation 2 can be calculated from them an-
alytically; however, in this study, we chose to derive them by a nu-
merical procedure that is easy to implement.

First, equation 1 is recast in an alternative form:

a0+a1A1 +612A2+ +aNANfU]
1 +b1a1 +b2A2+ +bMAM

a(’)—i—a{Al—}—aéA%—l- .. Fay
b+ biA, + bAT+ ... + by,

AY

The coefficients b; on the righthand side of equation A-1 can be
related to the coefficients b; on the lefthand side by choosing /1]
= ¢ and equating the denominators on both sides of equation
A-1.Theresulting equation writes

1 4 2b; cos kdx + 2b, cos 2kdx + ... + 2 cos Mkdx = b,
+ 2b cos kdx + 4b, cos® kdx + ...
+ 2Mp,, cosM kdx. (A-2)

By selecting M values of k, which yield different values of
cos kdx, i.e., they should not be equal to 277, we obtain a set of M lin-
ear equations in M unknowns for the b; coefficients.

The B, coefficients in equation 2 are then given by 8, = —1/4A,,
where A;i = 1,...,M are the roots of the polynomial

P(x) = b+ bjx" + bjx® + ... + bjM.

Finally, ¢;i=0,....N—M and d;i = 0,...,M — 1 in equation 2
are calculated by solving the set of N + 1 linear equation in N + 1
unknowns:

co+ 2cicoskydx + ...+ 2cy_ pr cos(N — M)k dx
d dy -
+——2 4+ M-
1+ 28 cos k,dx 1+ 2By cosk,dx

_ag+2a, cos kydx + ... + 2ay cos Nkdx
1+ 2b, cos kydx + ...+ 2by, cos Mk, dx’

where a =0,...,N

for different values of cos k,dx. The righthand side of this equation is
known.
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